首页> 外文OA文献 >Low-Complexity Robust Data-Adaptive Dimensionality Reduction Based on Joint Iterative Optimization of Parameters
【2h】

Low-Complexity Robust Data-Adaptive Dimensionality Reduction Based on Joint Iterative Optimization of Parameters

机译:基于maTLaB的低复杂度鲁棒数据自适应降维   参数的联合迭代优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a low-complexity robust data-dependent dimensionalityreduction based on a modified joint iterative optimization (MJIO) algorithm forreduced-rank beamforming and steering vector estimation. The proposed robustoptimization procedure jointly adjusts the parameters of a rank-reductionmatrix and an adaptive beamformer. The optimized rank-reduction matrix projectsthe received signal vector onto a subspace with lower dimension. Thebeamformer/steering vector optimization is then performed in areduced-dimension subspace. We devise efficient stochastic gradient andrecursive least-squares algorithms for implementing the proposed robust MJIOdesign. The proposed robust MJIO beamforming algorithms result in a fasterconvergence speed and an improved performance. Simulation results show that theproposed MJIO algorithms outperform some existing full-rank and reduced-rankalgorithms with a comparable complexity.
机译:本文提出了一种基于改进的联合迭代优化(MJIO)算法的低复杂度鲁棒数据相关降维算法,用于降阶波束形成和转向矢量估计。所提出的鲁棒性优化过程共同调整了秩减小矩阵和自适应波束形成器的参数。优化的秩减小矩阵将接收到的信号矢量投影到具有较低维的子空间上。然后,在降维子空间中执行波束形成器/转向矢量优化。我们设计了有效的随机梯度和递归最小二乘算法来实现所提出的鲁棒MJIO设计。所提出的健壮的MJIO波束成形算法可导致更快的收敛速度和更高的性能。仿真结果表明,所提出的MJIO算法在复杂度上优于某些现有的全秩和精简算法。

著录项

  • 作者

    Li, P.; de Lamare, R. C.;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号